今天给各位分享高一数学必修一试题的知识,其中也会对高一数学必修一试题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
高一数学必修一试题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一数学必修一试题、高一数学必修一试题的信息别忘了在本站进行查找喔。
本文导读目录:
数学的学科特点是公式背了一大堆,你要是不动手做题,你永远也学不会那些数字符号。数学必修一作为高一数学的入门教材,不仅高考占有很重要的比例,还对日后数学的成绩起着不可替代的作用,所以高一数学是重中之重,无论是家长还是孩子都应该格外重视高一的基础学年,别让数学一误误终生的剧情发生在你的身上。 检验数学成绩好坏的标准就是一张考卷的正确率,北北学姐为大家整理了“高中数学必修一测试题及答案”,大家可以用他来检验自己必修一的掌握程度。希望能帮到同学们提高成绩,决战高考! 答案获取: 个人主页直接找到我或者下方付费咨询 高一数学必修一试题 在社会的各个领域,我们总免不了要接触或使用试题,借助试题可以检验考试者是否已经具备获得某种资格的基本能力。你知道什么样的试题才是规范的吗?下面是小编为大家整理的高一数学必修一试题,欢迎阅读,希望大家能够喜欢。 一、选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U{1,2,3,4,5,6.7},A{2,4,6},B{1,3,5,7}.则A(CUB)等于 A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5} ( ) 2.已知集合A{x|x210},则下列式子表示正确的有( ) ①1A A.1个 ②{1}A B.2个 ③A C.3个 ④{1,1}A D.4个 3.若f:AB能构成映射,下列说法正确的有 ( ) (1)A中的任一元素在B中必须有像且唯一; (2)A中的多个元素可以在B中有相同的像; (3)B中的多个元素可以在A中有相同的原像; (4)像的集合就是集合B. A、1个 B、2个 C、3个 D、4个 4、如果函数f(x)x22(a1)x2在区间,4上单调递减,那么实数a的取值范围是 ( ) A、a≤3 B、a≥3 C、a≤5 D、a≥5 5、下列各组函数是同一函数的是 ( ) ①f(x) g(x)f(x) x与g(x) ③f(x)x0与g(x)1 x0 ;④f(x)x22x1与g(t)t22t1。 A、①② B、①③ C、③④ D、①④ 6.根据表格中的数据,可以断定方程exx20的一个根所在的区间是 ( )A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 7.若lgxlgya,则lg(x)3lg(y22)3 ( ) A.3a B.3 2a C.a D.a2 8、 若定义运算abbabx的值域是( ) aab,则函数fxlog2xlog12 A 0, B 0,1 C 1, D R 9.函数yax在[0,1]上的最大值与最小值的和为3,则a( ) A.11 2 B.2 C.4 D.4 10. 下列函数中,在0,2上为增函数的是( ) A、ylog1(x1) B、ylog22 C、ylog12 2x D、ylog(x4x5) 11.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是( A.一次函数模型 B.二次函数模型 C.指数函数模型 D.对数函数模型 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 (1) (2) (3) (4) )A、(1)(2)(4) B、(4)(2)(3) C、(4)(1)(3) D、(4)(1)(2) 二、填空题:本大题4小题,每小题4分,共16分.把正确答案填在题中横线上. 13.函数y=x+4x+2的定义域为 14. 若f(x)是一次函数,f[f(x)]=4x-1且,则f(x)= _________________. 15.已知幂函数y=f(x)的图象过点(2,2),则f(9)= . 16.若一次函数f(x)=ax+b有一个零点2,那么函数g(x)=bx2-ax的零点是三、解答题:本大题共5小题,共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题10分) 已知集合A={x|a-1已知定义在R上的函数y=f(x)是偶函数,且x≥0时,f(x)=lnx-2x+2(2),(1)当x<0时,求f(x)解析式;(2)写出f(x)的单调递增区间。 19.(本小题满分12分) 某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 20、(本小题满分12分) 已知函数4-x2(x>0) f(x)=2(x=0) 1-2x(x<0) (1)画出函数f(x)图像; (2)求f(a2+1)(a∈R),f(f(3))的值; (3)当-4≤x<3时,求f(x)取值的集合. 21.(本小题满分12分) 探究函数 f(x)=x+4x,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下: 请观察表中y值随x值变化的特点,完成以下的问题. 函数函数 f(x)=x+4x4x (x>0)在区间(0,2)上递减; (x>0)在区间 上递增. f(x)=x+当x= 时,y最小=证明:函数f(x)=x+思考:函数f(x)=x+4x 4x(x>0)在区间(0,2)递减.(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回果,不需证明) 一、选择题 1.T1=,T2=,T3=,则下列关系式正确的是() A.T1, 即T2bd B.dca C. dba D.bda 【解析】 由幂函数的图象及性质可知a0,b1,0ca.故选D. 【答案】 D 3.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α的值为() A.1,3 B.-1,1 C.-1,3 D.-1,1,3 【解析】 y=x-1=的'定义域不是R;y=x=的定义域不是R;y=x与y=x3的定义域都是R,且它们都是奇函数.故选A. 【答案】 A 4.已知幂函数y=f(x)的图象经过点,则f(4)的值为() A.16 B.2 C. D. 【解析】 设f (x)=xα,则2α==2-,所以α=-,f(x)=x-,f(4)=4-=.故选C. 【答案】 C 二、填空题5.已知n∈{-2,-1,0,1,2,3},若nn,则n=________. 【解析】 ∵--,且nn, ∴y=xn在(-∞,0)上为减函数. 又n∈{-2,-1,0,1,2,3}, ∴n=-1或n=2.【答案】 -1或2 6.设f(x)=(m-1)xm2-2,如果f(x)是正比例函数,则m=________,如果f(x)是反比例函数,则m=________,如果f(x)是幂函数,则m=________. 【解析】 f(x)=(m-1)xm2-2, 若f(x)是正比例函数,则∴m=±; 若f(x)是反比例函数,则即∴m=-1; 若f(x)是幂函数,则m-1=1,∴m=2. 【答案】 ± -1 2 三、解答题 7.已知f(x)=, (1)判断f(x)在(0,+∞)上的单调性并证明; (2)当x∈[1,+∞)时,求f(x)的最大值. 【解析】 函数f(x)在(0,+∞)上是减函数.证明如下:任取x1、x2∈(0,+∞),且x10,x2-x10,x12x220. ∴f(x1)-f(x2)0,即f(x1)f(x2). ∴函数f(x)在(0,+∞)上是减函数. (2)由(1)知,f(x)的单调减区间为(0,+∞),∴函数f(x)在[1,+∞)上是减函数, ∴函数f(x)在[1,+∞)上的最大值为f(1)=2. 8.已知幂函数y=xp-3(p∈N*)的图象关于y轴对称,且在 (0,+∞)上是减函数,求满足(a-1)(3+2a)的a的取值范围. 【解析】 ∵函数y=xp-3在(0,+∞)上是减函数, ∴p-30,即p3,又∵p∈N*,∴p=1,或p=2. ∵函数y=xp-3的图象关于y轴对称, ∴p-3是偶数,∴取p=1,即y=x-2,(a-1)(3+2a) ∵函数y=x在(-∞,+∞)上是增函数, ∴由(a-1)(3+2a),得a-13+2a,即a-4. ∴所求a的取值范围是(-4,+∞). 一、选择题 1、把 表示成 的形式,使 最小的 的值是( ) (A) (B)- (C)- (D) 2、设sin+cos= ,则tan+cot的值为( ) (A)2 (B)-2 (C)1 (D)2 3、f(x)是以2为周期的奇函数,若f(- )=1则f( )的值为( ) (A)1 (B)-1 (C) (D)- 4、要得到函数y=sin(2x+ )的图象,只需将函数y=sin2x的图象( ) (A)向左平移 (B)向右平移 (C)向左平移 (D)向右平移 5、已知x ( , ),则函数y= sinx cosx的值域为( ) (A)( , ) (B)( , ] (C)( , ) (D)( , ) 6、函数y=sin(2x+ )图象的一条对称轴方程为( ) (A)x=- (B)x= (C)x= (D)x=- 7、已知条件甲:tan+tan=0,条件乙:tan(+)=0 则( ) (A)甲是乙的必要非充分条件 (B)甲是乙的充分不必要条件 (C)甲是乙的充要条件 (D)甲既非乙的充分条件,也非乙的必要条件 8、下列命题中(1)在△ABC中,sin2A=sin2B,则△ABC必为等腰三角形 (2)函数y=tanx在定义域内为增函数(3) 是为第三象限角的充要条件 (4)若3sinx-1=0,则x=2k+arcsin ,k Z,正确命题的个数为( ) (A)0 (B)1 (C)2 (D)3 9、若 为第一象限角,且cos 0,则 等于( ) (A)1 (B)-1 (C)1 (D)0或 10、若△ABC两内角为、,满足sin= ,cos= 则此三角形的另一内角的余弦值为( ) (A) 或 (B) (C) (D) 或- 二、填空题: 11、已知 ,则cot( +A)= 。 12、等腰三角形的一底角的正弦为 ,则这个三角形顶角的正切值为 。 13、函数y=a-bcos3x(b0)的最大值为 ,最小值为- ,则a= ,b= 。 14、函数y=cos(2x- )的单调递增区间为 。 15、函数y= 的定义域为 。 16、已知tan=2,则sin2-cos2= 。 17、若asin+cos=1且bsin-cos=1(k, )则ab= 。 18、若sin+sin+sin=0且cos+cos+cos=0则cos(-)= 。 三、解答题 19、已知0且sin (+)= ,cos (-)= ,求cos2,cos2 20、函数y=Asin(x+ )(A0,0,| |)的图象上有两个相邻的最高点P( ,5)和最低点Q( ,-5)。求此函数的解析式。 21、已知 ,- 0,tan = ,tan = ,求2 + 的值。 22、求证: 。 23、求值: 24、设关于x的函数f(x)=2cos2x-2acosx-(2a+1)的最小值为F(a) (1)求F(a)的表达式; (2)试确定F(a)= 的a的值,并对此时的a求f(x)的最大值。 【高一数学必修一试题】相关文章: 高一数学必修三测试题及答案08-29 高一数学必修课的测试题07-29 高一语文必修一单元试题10-01 高一英语必修一Unit1试题09-29 2015高一物理必修2试题08-22 关于高一数学必修一教案09-29 高一物理必修2试题及答案201501-25 高一数学试题精选08-29 高一数学试题高一数学试题选择题08-31 总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可以帮助我们总结以往思想,发扬成绩,不如我们来制定一份总结吧。那么如何把总结写出新花样呢?下面是小编为大家整理的高一数学必修一知识点总结,仅供参考,欢迎大家阅读。 一、集合及其表示 1、集合的含义: “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。 所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。 2、集合的表示 通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。 有一些特殊的集合需要记忆: 非负整数集(即自然数集)N正整数集N_或N+ 整数集Z有理数集Q实数集R 集合的表示方法:列举法与描述法。 ①列举法:{a,b,c……} ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} ③语言描述法:例:{不是直角三角形的三角形} 例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 强调:描述法表示集合应注意集合的代表元素 A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。 3、集合的三个特性 (1)无序性 指集合中的'元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。 例题:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:该题有两组解。 (2)互异性 指集合中的元素不能重复,A={2,2}只能表示为{2} (3)确定性 集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。 知识点总结 本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。 一、函数的单调性 1、函数单调性的定义 2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法 二、函数的奇偶性和周期性 1、函数的奇偶性和周期性的定义 2、函数的奇偶性的判定和证明方法 3、函数的.周期性的判定方法 三、函数的图象 1、函数图象的作法 (1)描点法 (2)图象变换法 2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。 常见考法 本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。 误区提醒 1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。 2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。 3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。 4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。 5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。 1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。 2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。 3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的`命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。 4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。 5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。 6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。 7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。 一:函数模型及其应用 本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。 1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。 2、用函数解应用题的基本步骤是: (1)阅读并且理解题意。(关键是数据、字母的实际意义); (2)设量建模; (3)求解函数模型; (4)简要回答实际问题。 常见考法: 本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。 误区提醒: 1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。 2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。 【典型例题】 例1: (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的`本息和(不计复利)。 (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。 例2: 某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。 (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。 高一数学必修一知识点 指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的.取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 高一上册数学必修一知识点梳理 空间几何体表面积体积公式: 1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、a-边长,S=6a2,V=a3 4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱锥S-h-高V=Sh/3 7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3 8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6 9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2) 11、r-底半径h-高V=πr^2h/3 12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 人教版高一数学必修一知识点梳理 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 集合间的基本关系 1.子集,A包含于B,记为:,有两种可能 (1)A是B的一部分, (2)A与B是同一集合,A=B,A、B两集合中元素都相同。 反之:集合A不包含于集合B,记作。 如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。 2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) 3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的.子集。 4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。 例:集合共有个子集。(13年高考第4题,简单) 练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。 解析: 集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。 集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。 此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 【函数的应用】 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的`零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△0时,开口方向向上,a0时,抛物线向上开口;当a2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分类: 1、有限集含有有限个元素的集合 2、无限集含有无限个元素的集合 3、空集不含任何元素的集合例:{x|x2=—5} 知识点2 I、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,抛物线向上开口;当a0),对称轴在y轴左; 当a与b异号时(即ab0时,抛物线与x轴有2个交点。 Δ=b’2—4ac=0时,抛物线与x轴有1个交点。 Δ=b’2—4ac0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。 (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。 (3)△2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④ 如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ? 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、 描点法: B、 图象变换法 常用变换方法有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B 6.分段函数 (1)在定义域的不同部分上有不同的'解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x1)-f(x2)的正负); ○5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: ○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 高一数学集合有关概念 集合的含义 集合的中元素的三个特性: 元素的确定性如:世界上的山 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} 元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_N+整数集Z有理数集Q实数集R 列举法:{a,b,c……} 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2} 语言描述法:例:{不是直角三角形的.三角形} Venn图: 4、集合的分类: 有限集含有有限个元素的集合 无限集含有无限个元素的集合 空集不含任何元素的集合例:{x|x2=—5} 1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对称轴 y=ax^2 (0,0) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h>0,k0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x?-x?| 当△=0.图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0时,直线必通过一、三象限,y随x的增大而增大; 当k 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 当时间t一定,距离s是速度v的一次函数。s=vt。 当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式:(不全,希望有人补充) 求函数图像的k值:(y1-y2)/(x1-x2) 求与x轴平行线段的中点:|x1-x2|/2 求与y轴平行线段的中点:|y1-y2|/2 求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和) 集合的运算 运算类型交 集并 集补 集 定义域 R定义域 R 值域>0值域>0 在R上单调递增在R上单调递减 非奇非偶函数非奇非偶函数 函数图象都过定点(0,1)函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; 二、对数函数 (一)对数 1.对数的概念: 一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 指数式与对数式的互化 幂值 真数 = N = b 底数 指数 对数 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 + ; ○2 - ; ○3 . 注意:换底公式: ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论:(1) ;(2) . (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式 (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>10 定义域x>0定义域x>0 值域为R值域为R 在R上递增在R上递减 函数图象都过定点(1,0)函数图象都过定点(1,0) (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的`图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第四章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。 即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点. 5.函数的模型 棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的的性质: (1)侧棱交于一点。侧面都是三角形 (2)平行于底面的截面与底面是相似的.多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3)多个特殊的直角三角形 esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 解三角形 (1)正弦定理和余弦定理 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2)应用 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 数列 (1)数列的概念和简单表示法 ①了解数列的概念和几种简单的表示方法(列表、图象、通项公式). ②了解数列是自变量为正整数的一类函数. (2)等差数列、等比数列 ①理解等差数列、等比数列的概念. ②掌握等差数列、等比数列的通项公式与前项和公式. ③能在具体的问题情境中,识别数列的`等差关系或等比关系,并能用有关知识解决相应的问题. ④了解等差数列与一次函数、等比数列与指数函数的关系. 不等式 不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. (2)一元二次不等式 ①会从实际情境中抽象出一元二次不等式模型. ②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. ③会解一元二次不等式,对给定的一元二次不等式,会设计求解的`程序框图. (3)二元一次不等式组与简单线性规划问题 ①会从实际情境中抽象出二元一次不等式组. ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. (4)基本不等式: ①了解基本不等式的证明过程. ②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点 【高一数学必修一知识点总结】相关文章: 高一数学必修知识点总结12-15 高一数学必修一知识点总结12-07 高一数学必修一知识点总结07-18 高一数学必修一知识点总结01-03 高一数学必修一知识点总结03-08 高一数学必修1知识点总结09-08 高一数学必修二知识点总结11-08 高一必修一数学集合知识点总结12-03 高一数学必修一知识点总结归纳02-15 高一数学必修一知识点总结归纳01-14高一数学必修一试题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一数学必修一试题、高一数学必修一试题的信息别忘了在本站进行查找喔。
未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处。
原文地址:http://www.96gps.cn/post/4255.html发布于:2025-11-29



